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An adaptive high-order difference solution about a 2D nonlinear degenerate singular reaction-diffusion equation with a con-
vection term is initially proposed in the paper. After the first and the second central difference operator approximating the first-
order and the second-order spatial derivative, respectively, the higher-order spatial derivatives are discretized by applying the
Taylor series rule and the temporal derivative is discretized by using the Crank–Nicolson (CN) difference scheme. An alternating
direction implicit (ADI) scheme with a nonuniform grid is built in this way. Meanwhile, accuracy analysis declares the second
order in time and the fourth order in space under certain conditions. Sequentially, the high-order scheme is performed on an
adaptive mesh to demonstrate quenching behaviors of the singular parabolic equation and analyse the influence of combustion
chamber size on quenching. )e paper displays rationally that the proposed scheme is practicable for solving the 2D quenching-
type problem.

1. Introduction

Nonlinear reaction-diffusion equation with a singular or
near-singular source term has been widely applied in ion
conduct polarization theory [1], computational fluid dy-
namics [2], electromagnetism [3], material research [4],
ecology [5], thermology [6, 7], and so on. Different from the
linear reaction-diffusion equation, it has a chance to produce
a solution with singularity. Blow-up and quenching are
considered as singularity of a solution. At a limited time, the
former indicates that its solution tends to infinite, and the
latter indicates that its temporal derivative tends to infinite,
but its solution is restricted in a certain scope [8, 9]. Re-
searchers often use the nonlinear singular degenerate re-
action-diffusion model to simulate ignition and burning and
blow-up of the fuel, which can describe burning transfor-
mation from a stable status to an unstable status in a
combustion chamber and from which quenching may arise
[10]. To a large extent, it is to cognize features and change
laws of quenching precisely that decides the design and

optimization of the combustion chamber. We pay attention
to the quenching problem of the degenerative singular re-
action-diffusion equation with a convection term in this
paper.

Let us recall the development of the singular reaction-
diffusion equation of the quenching type. Since Kawarada
concluded that the time differential quotient of the solution
leans toward infinity when the solution approximates to one
indefinitely for this equation [1], more and more scholars
have focused on nonlinear singular problems. )e academic
system of researching the quenching phenomena of the
nonlinear reaction-diffusion equation has been gradually
established, which ranges from one dimension and two
dimension to three dimension [11–17]. More one-dimen-
sional problems are investigated rather than higher-di-
mensional ones. However, there are still some quenching
principles of the two-dimensional degenerate singular re-
action-diffusion equations discovered [6–10, 12–15]. Spe-
cially, they qualitatively depicted quenching or
nonquenching under certain conditions, asymptotic status
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of quenching time, the spatial definition domain size, i.e.,
critical length, resulting in quenching behaviors, and so on.
Sheng et al. have been engaged in research in this field.
Especially, Padgett and Sheng investigated the degenerate
stochastic Kawarada equations from 1D to 2D and 3D by
combining the finite difference schemes with arbitrary
meshes [11, 16, 17]. )e low-accuracy concepts are exploited
in the above resolutions. Ge et al. firstly rendered a high-
order compact difference scheme based on an adaptive mesh
to study the quenching principle of the one-dimensional
singular degenerate reaction-diffusion equation in 2018 [18].

Let us recall the development of the reaction-diffusion
equation with a convection term of the quenching type
again. Compared to the quenching equation mentioned in
the prior paragraph, less attention is paid to the convection-
reaction-diffusion equation with quenching singularity,
especially to the 2D and 3D problems [19]. So far, it is
difficult to find research on the 2D quenching problems.)e
authors in [19] discussed quenching phenomena under the
conditions of different convection terms and singularity
indexes: asymptotic status of quenching time, the spatial
definition domain size, i.e., critical length, and so on, for the
one-dimension singular equation. Sheng and Cheng studied
quenching behaviors of the same type equation by using the
fully adaptive difference scheme of low-order accuracy in
[20]. Sheng and Khliq investigated the relationship between
the critical value of the degenerative term that was not a
function of spatial points and both quenching time and
convergence time for the 1D singular degenerate problem in
[21]. Zhou et al. theoretically depicted the critical length and
the quenching spatial point for the convection-reaction-
diffusion equation without the degenerate term [22]. Re-
search studies above belong to the low-order difference
strategy. Recently, a high-order adaptive difference scheme
is firstly used to study the influence of degenerate function,
convection function, nonlinear source function, and spatial
definition length on quench behaviors for the one-dimen-
sional convection-reaction-diffusion equation, respectively
[23]. It provides the basis for adopting the high-precision
algorithm to analyse the quenching states of the 2D con-
vection-reaction-diffusion equation.

Depending on the previous research studies, we discover
that there is an important significance for researching this
two-dimensional convection-reaction-diffusion problem of
the quenching type. It is well known that the finite element
scheme and the finite difference scheme are popular nu-
merical methods to solve the convection-reaction-diffusion
equation [24–29]. )e improved schemes based on the finite
element are utilized to resolve the two-dimensional con-
vection-reaction-diffusion problems [24, 25]. In the past
years, there have emerged many finite difference schemes for
solving the two-dimensional convection-reaction-diffusion
problem [26–29]. Ge and Cao built up the transformation-
free high-order compact difference algorithm proposed by
Kalita et al. [26] on the multigrid to solve the 2D steady
convection-diffusion equation [27]. Huang proposed an
ADI scheme to solve the 2D unsteady convection-reaction-
diffusion equation, which is built by using the first and the
second central difference operators to approximate the first-

order and the second-order spatial derivative, respectively,
and the Crank–Nicolson (CN) method to the discrete
temporal derivative [28]. Li et al. represented a compact
finite difference scheme of unconditional stability and the
fourth order for solving the groundwater pollutant problem
based on the 2D nonlinear unsteady convection-diffusion
equation [29]. Of course, there exists other schemes for
solving the 2D problem. A Fourier spectral discretization
method was posted for explaining the high-dimensional
fractional reaction-diffusion equations by using two separate
mathematical techniques [30]. Pindza and Owolabi devel-
oped the Fourier spectral method in space and the expo-
nential integrator scheme in time to solve the 2D and 3D
fractional reaction-diffusion equations [31]. Nonlinear high-
dimensional convection-diffusion problems were resolved
by a novel mesh-less local Petrov–Galerkin method pro-
posed in [32]. Different from the above research studies,
Owolabi and Atangana [33] studied the high-dimensional
fractional reaction-diffusion systems of spatial interactions
of three components’ species. )e dynamical system was
considered to be of asymptotical stability both in local and
global style by analyzing the main equation theoretically.
Furthermore, a theory certifying the existence and perma-
nence of the three species was put forward.

In general, a high-order finite difference scheme has a
greater advantage comparing with other methods. An
adaptive ADI difference scheme based on the two-dimen-
sional unsteady reaction-diffusion equation with convection
function is used to analyze quenching phenomena of the 2D
combustion model through serial cases and investigate re-
lationship between burner shape and quenching features.
Due to significant practical meaning of quenching behaviors,
the important quenching information is beneficial to en-
gineering applications such as fuel burning and industry
manufacturing. )e compact scheme with the adaptive al-
gorithm is employed to compute a series of important in-
formation including quenching time and quenching
location. )ere are five parts in the paper. Section 1 in-
troduces the theme of this study. Section 2 describes care-
fully the proposed scheme of high-order accuracy. Section 3
proves adaptive mesh theory. Section 4 stimulates some
typical numerical samples to explore and explain quenching
problems. Section 5 draws the conclusion.

2. Problem and Difference Discretization

2.1. Semilinear Reaction-Diffusion Equation with Convection
Term. )is semilinear degenerate problem model involving
two spatial dimensions is regarded as equation (1) with the
boundary and initialization conditions of equation (2) and
(3). )e solution u(x, y, t) represents the temperature of the
combustion chamber. Ω ∈ (0, α) × (0, β) refers to the
smooth rectangle domain of the combustor, and zΩ is its
boundary. c1(x, y) and c2(x, y) are the convection functions
of x and y, and σ(x, y) � (x2 + y2)q/2 is the degeneracy
function and q≥ 0. )e singularity source f(u) � 1/(1 − u)θ

is strictly increasing for 0≤ u0 < 1 with
f(0) � f0 > 0, limu⟶ 1− f(u) �∞. )e typical convection-
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reaction-diffusion equation of the quenching type is written
as

σ(x, y)ut � uxx + uyy + c1(x, y)ux + c2(x, y)uy + f(u),

(x, y) ∈ Ω, t ∈ (0, T).

(1)

Its boundary conditions are

u(0, y, t) � u(α, y, t) � u(x, 0, t) � u(x, β, t) � 0, t ∈ (0, T).

(2)

Its initialization condition is

u(x, y, 0) � u0(x, y), (x, y) ∈ (0, α) ×(0, β). (3)

With the aid of the intermediate variables 􏽢x and 􏽢y, we
replace 􏽢x � x/α and 􏽢y � y/β in equation (1) which can be
defined as

σ(α􏽢x,β􏽢y)ut �
1
α2

u􏽢x􏽢x +
1
β2

u􏽢y􏽢y +
c1(α􏽢x,β􏽢y)

α
u􏽢x +

c2(α􏽢x,β􏽢y)

β
u􏽢y

+ f(u), (α􏽢x,β􏽢y) ∈ Ω, t ∈ (0, T).

(4)

For the convenience of expression, we use x and y in-
stead of 􏽢x and 􏽢y. )en, the above formulation can be
rearranged as

σ(x, y)ut �
1
α2

uxx +
1
β2

uyy +
c1(x, y)

α
ux +

c2(x, y)

β
uy

+ f(u), (x, y) ∈ Ω, t ∈ (0, T),

(5)

where σ(x, y) � (α2x2 + β2y2)q/2 and Ω ∈ (0, 1) × (0, 1).

Correspondingly, the boundary conditions of equation (5)
are

u(0, y, t) � u(1, y, t) � u(x, 0, t) � u(x, 1, t) � 0, t ∈ (0, T).

(6)

)e initialization condition of equation (5) is

u(x, y, 0) � u0(x, y), (x, y) ∈ (0, 1) ×(0, 1). (7)

In the physical application, we rely on equations (5) and
(7) to compute u and ut. )rough observing a large number
of values of u and ut, we can capture the quenching moment,
i.e., quenching occurs when u is infinitely close to 1 and ut

and becomes so huge that its value blows up.

2.2. Nonuniform ADI Difference Scheme. According to
Taylor formula [28], the high-accuracy ADI difference
scheme of equation (5) is deduced below. )e steady con-
vection-diffusion equation derived from the 1D unsteady
convection-diffusion equation in the x− direction is con-
sidered as (1/α2σ(x))uxx + (c1(x)/ασ(x))ux � g(x) where
g is a function of x. By virtue of the Taylors’ series ex-
pansions, we get expressions of (ux)k and (uxx)k, including
the central difference operators of the first and the second
spatial derivatives, discretized on the nonuniform mesh,
respectively. )e two expressions are substituted into the
above steady convection-diffusion equation. So, a 1D steady
convection-diffusion equation dispersed at point xk can be
written as

1
α2σk

−
c1k xR − xL( 􏼁

2ασk

􏼢 􏼣δ2xuk +
c1k

ασk

δxuk + ψ1x ux3( 􏼁k + ψ2x ux4( 􏼁k + ψ3x ux5( 􏼁k � gk + O
x5

R + x5
L

xR + xL

􏼠 􏼡, (8)

where

ψ1x � −
2 xR − xL( 􏼁 + αc1kxRxL

6α2σk

,

ψ2x � −
2 x2

R − xRxL + x2
L( 􏼁 + αc1k xR − xL( 􏼁xRxL

24α2σk

,

ψ3x � −
2 x3

R + xRx2
L − x2

RxL − x3
L( 􏼁 xR − xL( 􏼁 − αc1k − x3

RxL + x2
Rx2

L − xRx3
L( 􏼁

120α2σk

.

(9)

After discretizing (ux3)k and (ux4)k in the spatial di-
rection, equation (8) is reorganized as

C
− 1
x Pxuk � gk + C

− 1
x ψ3x ux5( 􏼁k + O

x5
R + x5

L

xR + xL

􏼠 􏼡, (10)

where
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Px � P1xδx + P2xδ
2
x,

P1x �
1
ασk

+ P9xδx − αψ2xδ
2
x􏼠 􏼡c1k,

P9x � − αψ1x + α2ψ2xc1k,

P2x �
1

α2σk

+ −
xR − xL

2ασk

+ P9x − 2αψ2xδx􏼠 􏼡c1k,

Cx � C0x + C1xδx + C2xδ
2
x,

C0x � 1 + αP9xδx − α2ψ2xδ
2
x􏼐 􏼑σk,

C1x � αP9x − 2α2ψ2xδx􏼐 􏼑σk,

C2x � − α2ψ2xσk.

(11)

Similarly, from the one-dimensional steady convection-
diffusion equation in the y− direction:
(1/β2σ(y))uyy + (c2(y)/βσ(y))uy � g(y), and the equation
in the y− direction can be derived as

C
− 1
y Pyuj � gj + C

− 1
y ψ3y uy5􏼐 􏼑

j
+ O

y5
R + y5

L

yR + yL

􏼠 􏼡, (12)

where
Py � P1yδy + P2yδ

2
y,

P1y �
1
βσj

+ P9yδy − βψ2yδ
2
y􏼠 􏼡c2j,

P9y � − βψ1y + β2ψ2yc2j,

P2y �
1

β2σj

+ −
yR − yL

2βσj

+ P9y − 2βψ2yδy􏼠 􏼡c2j,

Cy � C0y + C1yδy + C2yδ
2
y,

C0y � 1 + βP9yδy − β2ψ2yδ
2
y􏼐 􏼑σj,

C1y � βP9y − 2β2ψ2yδy􏼐 􏼑σj,

C2y � − β2ψ2yσj,

ψ1y � −
2 yR − yL( 􏼁 + βyRyLc2j

6β2σj

,

ψ2y � −
2 y2

R − yRyL + y2
L( 􏼁 + β yR − yL( 􏼁yRyLc2j

24β2σj

,

ψ3y � −
2 y3

R + yRy2
L − y2

RyL − y3
L( 􏼁 − β − y3

RyL + y2
Ry2

L − yRy3
L( 􏼁c2j

120β2σj

.

(13)

Adding the two hands of equation (10) and equation
(12), we can get a 2D steady convection-diffusion equation:

C
− 1
x Pxuk,j + C

− 1
y Pyuk,j � gk,j + C

− 1
x ψ3x ux5( 􏼁k,j + C

− 1
y ψ3y uy5􏼐 􏼑

k,j

+ O
x5

R + x5
L

xR + xL

􏼠 􏼡 + O
y5

R + y5
L

yR + yL

􏼠 􏼡.

(14)
We can mark the truncation error

C− 1
x ψ3x(ux5)k,j + C− 1

y ψ3y(uy5)k,j + O((x5
R + x5

L)/(xR + xL)) +

O((y5
R + y5

L)/(yR + yL)) as O(Δ) and get

CyPx + CxPy􏼐 􏼑uk,j � CxCygk,j + O(Δ). (15)

Subsequently, after substituting (ut − (f(u)/σ(x, y)))k,j

for gk,j in equation (14), the situation of point (n + 1/2) for
equation (15) is considered as

CxCy ut( 􏼁
n+1/2
k,j � CyPx + CxPy􏼐 􏼑u

n+1/2
k,j

+ CxCy

f(u)

σ(x, y)
􏼠 􏼡

n+1/2

k,j

+ O(Δ).
(16)

)e Crank–Nicolson method is used to discretize the
temporal term of equation (16), and an equation of point
(n + 1) can be formed as

CxCy −
τn

2
CyPx + CxPy􏼐 􏼑􏼔 􏼕u

n+1
k,j � CxCy +

τn

2
CyPx + CxPy􏼐 􏼑􏼔 􏼕u

n
k,j

+
τnCxCy

2σ(x, y)
f

n+1
k,j + f

n
k,j􏼐 􏼑

+ O τnΔ( 􏼁 + O τ3n􏼐 􏼑,

(17)

where τn is the time step and O(τnΔ) + O(τ3n) is the trun-
cation error. When (τ2n/4)PyPxun+1

k,j is added to the left side
of equation (18) and (τ2n/4)PyPxun+1

k,j is added to the right
and the truncation error is deleted, a group of linear system
is organized as

Cx −
τn

2
Px􏼒 􏼓 Cy −

τn

2
Py􏼒 􏼓􏼔 􏼕u

n+1
k,j � Cx +

τn

2
Px􏼒 􏼓 Cy +

τn

2
Py􏼒 􏼓􏼔 􏼕u

n
k,j

+
τnCxCy

2σ(x, y)
f

n+1
k,j + f

n
k,j􏼐 􏼑.

(18)

By virtue of the intermediate variable u∗k,j, equation (18)
is reorganized as

Cx −
τn

2
Px􏼒 􏼓u

∗
k,j � Cx +

τn

2
Px􏼒 􏼓 Cy +

τn

2
Py􏼒 􏼓􏼔 􏼕u

n
k,j

+
τnCxCy

2σ(x, y)
f

n+1
k,j + f

n
k,j􏼐 􏼑,

(19)

Cy −
τn

2
Py􏼒 􏼓u

n+1
k,j � u

∗
k,j. (20)

After equation (19) is computed and arranged again, a
linear system is formed as

B
∗j

U
∗j

� U
∧j(n)

+ F
j(n,n+1)

, j � 1, 2, 3, . . . , J − 1. (21)
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In equation (21),

B
∗j

�

b
∗j
1,2x b

∗j
1,3x

b
∗j
2,1x b

∗j
2,2x b

∗j
2,3x

· · · · · · · · ·

b
∗j
K− 2,1x b

∗j
K− 2,2x b

∗j
K− 2,3x

b
∗j
K− 1,1x b

∗j
K− 1,2x

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

U
∗j

�

u∗0,j

u∗1,j

u∗2,j

· · ·

u∗k,j

· · ·

u∗K− 2,j

u∗K− 1,j

u∗K,j

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

U
∧j(n)

�

u∧1,j

u∧2,j

· · ·

u∧k,j

· · ·

u∧K− 2,j

u∧K− 1,j

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

F
j(n,n+1)

�

F1,j

F2,j

· · ·

Fk,j

· · ·

FK− 2,j

FK− 1,j

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(22)

)e elements of B∗j are

b
∗j
k,1x �

2 C2x − τn/2( 􏼁P2x( 􏼁 − xL C1x − τn/2( 􏼁P1x( 􏼁

xL xR + xL( 􏼁
,

b
∗j
k,2x �

− 2 C2x − τn/2( 􏼁P2x( 􏼁 + C0xxRxL

xRxL

,

b
∗j
k,3x �

2 C2x − τn/2( 􏼁P2x( 􏼁 + xR C1x − τn/2( 􏼁P1x( 􏼁

xR xR + xL( 􏼁
.

(23)

)e element u∧k,j of U∧j(n) is

u
∧
k,j � d

∗j
k,1x d

∗j
k,1yu

n
k− 1,j− 1 + d

∗j
k,2yu

n
k− 1,j + d

∗j
k,3yu

n
k− 1,j+1􏼔 􏼕

+ d
∗j
k,2x d

∗j
k,1yu

n
k,j− 1 + d

∗j
k,2yu

n
k,j + d

∗j
k,3yu

n
k,j+1􏼔 􏼕

+ d
∗j
k,3x d

∗j
k,1yu

n
k+1,j− 1 + d

∗j
k,2yu

n
k+1,j + d

∗j
k,3yu

n
k+1,j+1􏼔 􏼕,

(24)

where

d
∗j
k,1x �

2 C2x + τn/2( 􏼁P2x( 􏼁 − xL C1x + τn/2( 􏼁P1x( 􏼁

xL xR + xL( 􏼁
,

d
∗j
k,2x �

− 2 C2x + τn/2( 􏼁P2x( 􏼁 + C0xxRxL

xRxL

,

d
∗j
k,3x �

2 C2x + τn/2( 􏼁P2x( 􏼁 + xR C1x + τn/2( 􏼁P1x( 􏼁

xR xR + xL( 􏼁
,

d
∗j
k,1y �

2 C2y + τn/2( 􏼁P2y􏼐 􏼑 − yL C1y + τn/2( 􏼁P1y􏼐 􏼑

yL yR + yL( 􏼁
,

d
∗j
k,2y �

− 2 C2y + τn/2( 􏼁P2y􏼐 􏼑 + C0yyRyL

yRyL

,

d
∗j
k,3y �

2 C2y + τn/2( 􏼁P2y􏼐 􏼑 + yR C1y + τn/2( 􏼁P1y􏼐 􏼑

yR yR + yL( 􏼁
.

(25)

)e element Fk,j of Fj((n,n+1) is

Fk,j �
τn

2σ
s
∗j
k,1x s
∗j
k,1y f

n
k− 1,j− 1 + f

n+1
k− 1,j− 1􏼐 􏼑 + s

∗j
k,2y f

n
k− 1,j + f

n+1
k− 1,j􏼐 􏼑 + s

∗j
k,3y f

n
k− 1,j+1 + f

n+1
k− 1,j+1􏼐 􏼑􏼔 􏼕

+
τn

2σ
s
∗j
k,2x s
∗j
k,1y f

n
k,j− 1 + f

n+1
k,j− 1􏼐 􏼑 + s

∗j
k,2y f

n
k,j + f

n+1
k,j􏼐 􏼑 + s

∗j
k,3y f

n
k,j+1 + f

n+1
k,j+1􏼐 􏼑􏼔 􏼕

+
τn

2σ
s
∗j
k,3x s
∗j
k,1y f

n
k+1,j− 1 + f

n+1
k+1,j− 1􏼐 􏼑 + s

∗j
k+1,2y f

n
k+1,j + f

n+1
k+1,j􏼐 􏼑 + s

∗j
k,3y f

n
k+1,j+1 + f

n+1
k+1,j+1􏼐 􏼑􏼔 􏼕,

(26)
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where

s
∗j
k,1x �

2C2x − xLC1x

xL xR + xL( 􏼁
,

s
∗j
k,2x �

− 2C2x + C0xxRxL

xRxL

,

s
∗j
k,3x �

2C2x + xRC1x

xR xR + xL( 􏼁
,

s
∗j
k,1y �

2C2y − yLC1y

yL yR + yL( 􏼁
,

s
∗j
k,2y �

− 2C2y + C0yyRyL

yRyL

,

s
∗j
k,3y �

2C2y + yRC1y

yR yR + yL( 􏼁
.

(27)

Similarly, from equation (20), another linear system is
written as

BU
n+1

� U
∗
, (28)

where

B �

b1,2y b1,3y

b2,1y b2,2y b2,3y

· · · · · · · · ·

bJ− 2,1y bJ− 2,2y bJ− 2,3y

bJ− 1,1y bJ− 1,2y

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (29)

in which

bj,1y �
2 C2y − τn/2( 􏼁P2y􏼐 􏼑 − yL C1y − τn/2( 􏼁P1y􏼐 􏼑

yL yR + yL( 􏼁
,

bj,2y �
− 2 C2y − τn/2( 􏼁P2y􏼐 􏼑 + C0yyRyL

yRyL

,

bj,3y �
2 C2y − τn/2( 􏼁P2y􏼐 􏼑 + yR C1y − τn/2( 􏼁P1y􏼐 􏼑

yR yR + yL( 􏼁
.

(30)

It can be observed that each un+1
k,j on the n + 1th time

layer is obtained, according to un
k,j on the prior one, by

computing the tridiagonal linear equations twice. We adopt
the catch-up method to solve the linear equations. We rely
on equation (21) to get the medial variable u∗k,j, which
represents the x− direction. Subsequently, we depend on u∗k,j

and equation (28) to gain un+1
k,j , which carries information in

the y− direction and so on, until the solutions on the last time
axis are worked out.)e accuracy analysis of equation (18) is
performed, and its truncation error is

O τ2n + x
2
R + x

2
L􏼐 􏼑 xR − xL( 􏼁 + y

2
R + y

2
L􏼐 􏼑 yR − yL( 􏼁􏼐

+
x5

R + x5
L

xR + xL

+
y5

R + y5
L

yR + yL

􏼡.

(31)

Note that equations (19) and (20) have the second-order
accuracy in time and the third- or fourth-order accuracy in
space. )e scheme of uniform owns spatial accuracy of the
fourth order, whereas its nonuniform scheme owns spatial
accuracy of the third order.

3. Adaptive Mesh Method

3.1. Temporal Adaptive Mesh Method. Comparing with so-
lution u, the temporal derivative ut is more sensible.
)erefore, like the 1D adaptive method, the 2D adaptive
meshmethod in the time direction is based on the arc-length
monitor function of the temporal derivative function ut. We
can extend the 1D adaptive temporal grid schemes in
Reference [23] to the 2D case:

τn

τn− 1
�

max0<k<K
0<j<J

�������������������

1 + utt xk, yj, tn− 1/2􏼐 􏼑􏽨 􏽩
2

􏽱

max0<k<K
0<j<J

�������������������

1 + utt xk, yj, tn+1/2􏼐 􏼑􏽨 􏽩
2

􏽱 , n � 1, 2, . . . .

(32)

After utt in equation (32) is discretized through the
central difference formulas to calculate the maximum ratio,
the adaptive time step τn is easily obtained by equation (32)
and τn− 1 in the prior time layer.

3.2. Spatial Adaptive MeshMethod. Similarly, we can utilize
the arc-length monitor function in the space direction based
on ut and extend from the 1D adaptive spatial algorithm to
the 2D problem by relying on Reference [23]. )erefore,
Wx(x, t) representing the monitor function in the
x− direction andWy(y, t) representing themonitor function
in the y− direction can be written as

Wx(x, t) �

���������������

1 + 􏽘
K

k�0
utx(x, t)􏼂 􏼃

2

􏽶
􏽴

, 0≤ x≤ 1, 0≤ t<T,

(33)

Wy(y, t) �

���������������

1 + 􏽘

J

j�0
uty(y, t)􏽨 􏽩

2

􏽶
􏽴

, 0≤y≤ 1, 0≤ t<T.

(34)

)e two spatial monitor functions are positive in their
definition area. ξk(xk, t)􏼈 􏼉

K

k�0 and ζj(yj, t)􏽮 􏽯
J

j�0 represent the
set of 2D original spatial mesh points. After an adaptive
improvement is complemented, the grid in the 2D com-
putational area is updated as xk(ξk, t)􏼈 􏼉

K

k�0 in the
x− direction and yj(ζj, t)􏽮 􏽯

J

j�0 in the y− direction. It is easily
observed that the 1D adaptive grid scheme acts on in the
x− direction and y− direction, respectively, to produce new
grid points.

We take the equidistributing mesh in the y− direction as
an example below. From [23], we know that the subareas of
Wy(y, t) in intervals of [yj− 1(t), yj(t)](j � 1, 2, . . . , J) are
equal. Obviously, when Wy ≡ 1, the scope [0, 1] is uniform.
It can be expressed as
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􏽚
y1

y0

Wy(y, t)dy � 􏽚
y2

y1

Wy(y, t)dy � · · · � 􏽚
yJ

yJ− 1

Wy(y, t)dy �
1
J

􏽚
1

0
Wy(y, t)dy � ςy(t), (35)

where ςy(t) is the average arc-length. Equation (35) is equal
to

􏽚
yj

yj− 1

Wy(y, t)dy � 􏽚
ζj

ζj− 1

Wy(y(ζ , t), t)y′(ζ, t)dζ , j � 1, 2, . . . , J. (36)

After the second derivation of the aforementioned
formula, the following equation can be obtained:

z

zζ
Wy y

(m)
j , t􏼐 􏼑

z

zζ
y

(m+1)
j􏼐 􏼑􏼠 􏼡 � 0, (37)

where m represents the iterative number, y
(m)
j􏽮 􏽯

J

j�0 repre-
sents the spatial grid node set before iteration, and
y

(m+1)
j􏽮 􏽯

J

j�0 represents the space grid node set after iteration.
Equation (37) can be solved by the difference scheme:

Wy y
(m)
j+1/2, τn􏼐 􏼑 y

(m+1)
j+1 − y

(m+1)
j􏼐 􏼑 − Wy y

(m)
j− 1/2, τn􏼐 􏼑 y

(m+1)
j − y

(m+1)
j− 1􏼐 􏼑 � 0, j � 1, 2, . . . , J − 1, n≥ 0, (38)

which approximates to the former. Similarly, the semi-
implicit scheme in the x− direction is defined as

Wx x
(m)
k+1/2, τn􏼐 􏼑 x

(m+1)
k+1 − x

(m+1)
k􏼐 􏼑 − Wx x

(m)
k− 1/2, τn􏼐 􏼑 x

(m+1)
k − x

(m+1)
k− 1􏼐 􏼑 � 0, k � 1, 2, . . . , K − 1, n≥ 0. (39)

3.3. Iterative Adaption Method. )e adaptive iterative pro-
cedure of the presentedmethod is carried forward as follows.
Firstly, the spatial monitor functions Wx(x, t) and Wy(y, t)

can be obtained through equations (33) and (34) based on
the grids x

(m)
k􏽮 􏽯

K

k�0 and y
(m)
j􏽮 􏽯

J

j�0 in the nth time layer.
Secondly, depending on equations (38) and (39), we can gain
x

(m+1)
k􏽮 􏽯

K

k�0 derived from x
(m)
k􏽮 􏽯

K

k�0 in the x− direction and

y
(m+1)
j􏽮 􏽯

J

j�0 derived from y
(m)
j􏽮 􏽯

J

j�0 in the y− direction. )e
new points substitute for the old points iteratively when
􏽐

K− 1
k�1 ‖x

(m+1)
k − x

(m)
k ‖< er and 􏽐

J− 1
j�1‖y

(m+1)
j − y

(m)
j ‖< er are

reached for 0< er≤ 1. mmax is the terminal value of m + 1.
)irdly, from the value built on the last grid point sets
x

(mmax)

k􏽮 􏽯
K

k�0 and y
(mmax)
j􏽮 􏽯

J

j�0, un
k,j􏼚 􏼛

K− 1,J− 1

k�1,j�1
is computed by

using the method of area ratio. )us, we can get
un+1

k,j􏼚 􏼛
K− 1,J− 1

k�1,j�1
in the n + 1th time layer depending on

equation (18). Lastly, repeat the aforementioned produce till
quenching occurs or the solution converges to a steady
solution.

4. Numerical Illustration

4.1. Common Example. It is not a quenching case. It is just
for demonstrating the accuracy and convergence of the
proposed difference scheme. We have solved the following
unsteady convection-diffusion equation with coefficient
whose exact solution is offered:

put � uxx + uyy − pux − puy, (x, y) ∈ [0, 1] ×[0, 1], t≥ 0,

u(x, y, t) �
epx − 1
ep − 1

+
epy − 1
ep − 1

+ 􏽘
∞

q�1

(− 1)qqπ
(qπ)2 + p2/4

e
p(x− 1)/2+p(y− 1)/2 sin(qπx + qπy)e

− (qπ)2/p + p/4[ ]t
.

(40)

Mathematical Problems in Engineering 7



www.manaraa.com

)e initial and boundary value conditions are derived
from the exact solution. )ere are four metrics for the data
test, which are maximum error, average error, CPU time,
and convergence rate. We adopt these parameters
T � 0.5, τn � 0.01, andp � 100 to fulfill the two difference
schemes: the proposed scheme based on the uniform mesh
and the proposed scheme based on the nonuniform mesh.
k/K + (λx/π)sin(πk/K)􏼈 􏼉

K
k�0 and j/J + (λy/π)sin(πj/J)􏽮 􏽯

J

j�0
represent the nonuniform grid, where K and J point to
intervals of the spatial direction and K � J, whereas
λx and λy point to the mesh transformation coefficient and
λx � λy.

Table 1 offers these measuring data. It displays the ac-
curacies and running time of our scheme (uniform and
nonuniform). We select five spatial intervals: 16, 32, 64, 128,
and 256 as test cases, which are given to each of the above
two meshes (i.e., uniform and nonuniform). For the non-
uniform mesh, the different values of λx impact these
precision criteria. In the paper, λx takes 0.7. )e maximum
errors of the first scheme are higher than those of the second
one, and the average errors of the latter are superior to those
of the former. Furthermore, the larger the number of spatial
intervals is, the higher the accuracies of the scheme based on
the nonuniform grid are. Its accuracies arrive at
1.3364×10− 7 in the maximum error and 6.4492×10− 9 in the
average error whenK � J � 256. In terms of computing time
of the two schemes whose measurement unit is millisecond,
the first scheme is lower than the second one. Obviously, by
comparing with the uniform mesh, the difference scheme
based on the nonuniform mesh spends more time to run.
Lastly, the conv. rate values are observed. )e tendency of
the conv. rate from the former scheme is similar to that from
the latter scheme. We take the latter as the example.)e four
values are positive, which means the accuracy increases as K

rises when K ∈ [16, 256]. )e conv. rate value is maximum
when K transfers from 16 to 32, which means the accuracy
promotes greatly in the stage. )e latter three values are
close, whichmeans the accuracy promotes gently in the three
stages.

4.2. Quenching Case without Convection Term. )is section
will describe a quenching status without the convection
term, i.e., c1(x, y) � 0 and c2(x, y) � 0. )e mathematical
model can be expressed as

α2x2
+ β2y2

􏼐 􏼑
q/2

ut �
1
α2

uxx +
1
β2

uyy +
1

(1 − u)θ
,

(x, y) ∈ (0, 1) ×(0, 1), t ∈ (0, T).

(41)

Its initial and boundary conditions are just as in
equations (6) and (7).

After equations (19) and (20) are used to approximate
equation (41), we can get some quenching behaviors. For the
2D nonlinear degeneration singularity equation without the
convection term, we demonstrate the quenching case of q �

0 that has been described in [13, 14]. In Table 2 and Figure 1,
q � 0, a � β �

��
10

√
, and θ � 1 which are the same for the

three approaches, but the initial space step h0 and the initial
temporal step τ0 are different among them, where we take
h0 � 1/50 and τ0 � 4.166677 × 10− 3. In Table 2, the five
parameters represent the same senses, in which (xmax, ymax)

represents the point of quenching location, tmax represents
the quenching time, max urepresents the maximum tem-
perature value immediately before quenching happens, and
max ut means the maximum variation of temperature with
respect to time immediately before quenching happens.
From Table 2, we can see that the quenching location
(0.5, 0.5) of the referred scheme is identical with that of the
scheme in [14], and tmax � 0.5958348109999995 and
max u � 0.998562875689732 of the first one are close to
those of the last two. Obviously, max ut is different among
the various methods. From Figure 1, it is found that
u⟶ 1− and ut⟶ 690− at the location
(xmax, ymax) � (0.5, 0.5) and the quenching time
tmax � 0.5958348109999995.

4.3. Quenching Case with Convection Term b/(1 + αx + βy).
)e standard 2D degenerate semilinear quenching problem
with the initial boundary condition lists in equations (5)–(7)
is extended from the equation in one-space dimension [23].
)e first convection term b/(1 + αx + βy) can be written as
two functions c1(x, y) � bx/(1 + αx + βy) and
c2(x, y) � by/(1 + αx + βy), where bx and by take the
constants.)e four groups of variables: q, bx and by, α and β,
and θ in equations (5)–(7) affect the quenching character-
istics of the 2D problem, whose meaning has been stated in
Section 2. )ere follows a special case for b/(1 + αx + βy).
)e initial time step is considered as τ0 � 0.0003, and the
initial space step is considered as h0 � 1/55, in which the
x-direction is identical with the y-direction.)e four groups
of parameters are configured as q � 0.5, α � β �

���
200

√
, bx �

by � 10, and θ � 1 which is defined as Case 7.0.)is will lead
to a quenching phenomenon. Quenching location (x∗7 , y∗7 ) is
(0.03636363636363636, 0.03636363636363636); the
quenching time T∗7 is 4.487776579638927; maxx,yu is
0.9992409498317957; maxx,y(ut) is 1539.153786381783.
When t is 4.486155872847072, the temporal step starts to
become smaller and smaller until quenching occurs. We
choose six rows of representative data given in Table 3 which
poins to features relative to x, y, t, u, and ut before
quenching occurs of Case 7.0. maxx,yu and maxx,y(ut) refer
to maximal u and maximal ut in each time layer before
quenching occurs; x and y refer to the coordinate point of
synchronously producing maxx,yu and maxx,y(ut) in each
time layer before quenching occurs; t refers to themoment at
which each time layer is located before quenching occurs.
(x, y) first appears at the point (x∗7 , y∗7 ) when t is
4.487088240486234 which is the first row in Table 3 and
maintains at this point until quenching occurs. When t is T∗7
which is the immediate time before quenching happens, we
can obtain important characteristics. When t is
4.487777138788559, maxx,y(ut) blows up and reaches
1.051076326841211× 109.

Figures 2–7 provide seven groups of graphs to illustrate
more particular quenching statuses. Figure 2 shows the 2D
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plots of maxx,yu and maxx,y(ut) changing as t rises from the
initial moment until quenching occurs. Figure 2(a) corre-
sponds to u, and Figure 2(b) corresponds to ut. Figure 3
sketches the 2D contours of u and ut regarding x imme-
diately before quenching happens. Figure 3(a) corresponds
to u, and Figure 3(b) corresponds to ut. Figure 4 draws the

2D outlines of u and ut regarding y immediately before
quenching happens. Figure 4(a) corresponds to u, and
Figure 4(b) corresponds to ut. )e three 2D plots in Figure 5
describe the adaptive mechanism before quenching occurs.
)e first one reflects spatial adaptation, and the last two
reflect temporal adaptation. Figure 5(a) describes the trend

Table 1: )e parameter values for common example.

Difference schemes K(J) Max. error Aver. error CPU time Conv. rate

)e proposed scheme (uniform)

16 2.4859×10− 1 1.7858×10− 2 47 —
32 5.7032×10− 2 1.9148×10− 3 172 5.0033
64 5.5382×10− 3 1.4565×10− 4 702 3.7166
128 3.1469×10− 4 9.6850×10− 6 2948 3.9106
256 1.9710×10− 5 6.1743×10− 7 11794 3.9714

)e proposed scheme (nonuniform)

16 8.1898×10− 3 8.7725×10− 4 358 —
32 2.9724×10− 4 2.9996×10− 5 2855 7.9861
64 1.5573×10− 5 1.6521× 10− 6 14914 4.1824
128 9.3004×10− 7 1.0224×10− 7 35006 4.0143
256 1.3364×10− 7 6.4492×10− 9 165969 3.9867

Table 2: Quenching performances of different schemes for q � 0, a � β �
��
10

√
, and θ � 1 without the convection term.

Schemes tmax xmax ymax maxu max ut

)e proposed scheme 0.5958348109999995 0.500 0.500 0.998562875689732 689.2724781649539
)e scheme in [13] 0.58712499993751 — — 0.990432 148.887767
)e scheme in [14] 0.587554 0.500 0.500 0.999263 1249.917563

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

y x

u

0

0.2

0.4

0.6

0.8

1

(a)

0
140
280
420
560
700

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

y x

u t

(b)

Figure 1: (a) )e 3D plots of u immediately before quenching occurs and (b) the 3D plots of ut immediately before quenching occurs. )e
parameters are q � 0, a � β �

��
10

√
, and θ � 1 without the convection term.

Table 3: Time, location, maxx,yu, and maxx,y(ut) in the six temporal layers which contain quenching occurrence for Case 7.0.

t x y maxx,yu maxx,y(ut)

4.487088240486234 0.03636363636363636 0.03636363636363636 0.9794485698289615 52.18443133976322
4.487489880800603 0.03636363636363636 0.03636363636363636 0.9854614620545389 75.52899759027348
4.487653824098646 0.03636363636363636 0.03636363636363636 0.9897483333199262 109.0744740434431
4.487770702255042 0.03636363636363636 0.03636363636363636 0.9972318816440022 418.0023774450405
4.487776579638927 0.03636363636363636 0.03636363636363636 0.9992409498317957 1539.153786381783
4.487777138788559 — — — 1.051076326841211× 109
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of the temporal step over time. To distinguish more clearly
the variation, we intercept the curves of the period from
4.470000000001407 to 4.487777138788559. )e red sign on
the blue curve in Figure 5(a) denotes the initial temporal
adaptive moment (i.e., 4.486155872847072). )e temporal
step is uniform before the adaptive moment but becomes
nonuniform when t varies from 4.486155872847072 to
4.487777138788559. )e green sign on the blue curve in
Figure 5(a) denotes the initial moment (i.e.,
4.487088240486234) of producing the quenching location
(x∗7 , y∗7 ). )e green lines in Figures 5(b) and 5(c) describe

the uniform spatial steps in the x− direction and the
y− direction, respectively. )e spatial adaptation occurs at
4.487777138788559 after which the spatial step becomes
nonuniform. )e red curves with blue spots in Figures 5(b)
and 5(c) describe, respectively, the nonuniform spatial steps
in the x− direction and the y− direction at T∗7 . Although the
two curves are very similar, there is still subtle difference
between their data. Figures 6–7 provide the 3D surfaces of u

and ut with respect to spatial variables x and y at certain
special time. Figure 6(a) records the 3D surfaces about x, y,
and u, and Figure 6(b) records the 3D surfaces about x, y,
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Figure 2: )e graphs of (a) maxx,yu as t increases and (b) maxx,y(ut) as t increases from the initial moment to the occurrence of quenching
behavior for the convection term b/(1 + αx + βy).
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Figure 3: )e graphs of (a) u as x increases and (b) ut as x increases when t is T∗7 for the convection term b/(1 + αx + βy).
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and ut when t � 4.487770702255042. Figure 7(a) records the
3D surfaces about x, y, and u, and Figure 7(b) records the 3D
surfaces about x, y, and ut when T∗7 .

4.4. Quenching Case with Convection Term b/(αx + βy).
)e second convection term b/(αx + βy) can be written as
the two convection functions: c1(x, y) � bx/(αx + βy) and
c2(x, y) � by/(αx + βy), where bx and by take the constants.
Comparing with the first convection term b/(1 + αx + βy), it
is hard to conduct quenching behavior for the second
convection term b/(αx + βy). We make a following con-
figuration to gain a quenching status. )e initial x− step
(y− step) is h0 � 1/40, and the initial t− step is τ0 � 0.0005.
)e four groups of important parameters are set as q �

1.1, α � β � 20, bx � by � 3, and θ � 1 which is defined as
Case 8.0. )e parameter statuses of the case are recorded in
Table 4. For the case, the initial time of producing the
quenching location is earlier than the temporal adaptive
time. )e former time is 5.596499999999618, which is the
first row in Table 4, the latter one is 5.603982012140827,
which is the fifth row in Table 4, and the quenching location
(x∗8 , y∗8 ) is (0.025, 0.025). Moreover, it is so transient from
the front time of quenching location appearing to the ter-
minative time of quenching location appearing that there are
18 time layers between the two moments. )e latter
quenching time is (T∗8 � 5.604262757909247), maxx,yu is
0.9835341519876587, and maxx,y(ut) is 73.15674241637485
immediately before quenching occurs, which is the sixth row
in Table 4. maxx,y(ut) gets the value
6.637517818582074×1011 and blows up when t is
5.604272047535358, which is the last row in Table 4.

)is paragraph supplies five sets of figures (i.e.,
Figures 8–12) to more vividly depict the quenching infor-
mation of the case. )e 2D curves in Figure 8 describe the
relationship between maxx,yu and t and the relationship

between maxx,y(ut) and t. )e 2D curves in Figure 9 de-
scribe the relationship between u and x and the relationship
between ut and x. )e 2D curves in Figure 10 describe the
relationship between u and y and the relationship between
ut and y. In Figures 8–10, (a) corresponds to u and (b)
corresponds to ut. Figure 11(a) draws the tendency of the
temporal step varying with temporal variable t; Figure 11(b)
draws the tendency of the initial spatial step and the adaptive
step varying with spatial variable x; and Figure 11(c) draws
the tendency of the initial spatial step and the adaptive step
varying with spatial variable y. For Figure 11(a), to dis-
tinguish more clearly the variation, we intercept the curves
of the period from 5.580499999999627 to
5.604272047535358; and the red spot on the blue curve
expresses the earliest temporal adaptive time (i.e.,
5.603982012140827). maxx,y(ut) in the time step becomes
1.185615675885128×1012 when t is 5.603982012140827. )e
temporal step is uniform before the adaptive moment but
becomes nonuniform since then. )e green spot on the blue
curve expresses the initial moment of producing the
quenching location (x∗8 , y∗8 ), which is 5.604262757909247.
In Figures 11(b) and 11(c), the green lines indicate the
uniform initial spatial steps while the red curves with blue
signs indicate the nonuniform adaptive spatial steps. Lastly,
we provide two 3D surfaces in Figure 12 to state quenching
statuses of u and ut when t � T∗8 . Figure 12(a) denotes the
relationship between u, x, and y, and Figure 12(b) denotes
the relationship between ut, x, and y. Figure 12(a) records
the 3D surfaces about x, y, and u, and Figure 12(b) records
the 3D surfaces about x, y, and ut when t � T∗8 . )ere is a
narrowband projecting the rear plane of the 3D axis box in
Figure 12(b). )is is because some larger values of
maxx,y(ut) appear at the positions, in which the x− axis and
the y− axis are simultaneously near the origin of the coor-
dinates. From the data source of the 3D surface, we can
observe some larger maxx,y(ut) varying from 1 to 27,
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Figure 4: )e graphs of (a) u as y increases and (b) ut as y increases when t is T∗7 for the convection term b/(1 + αx + βy).
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Figure 5: (a))e curve of the temporal steps τn as time t increases, (b) the variation of spatial steps hk as x processes, and (c) the variation of
spatial steps hk as y processes and for the convection term b/(1 + αx + βy).
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Figure 6: (a) )e 3D plot of u and (b) the 3D plot of ut when t � 4.487770702255042 for the convection term b/(1 + αx + βy).
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Figure 7: (a) )e 3D plot of u and (b) the 3D plot of ut when t � T∗7 for the convection term b/(1 + αx + βy).

Table 4: Time, location, maxx,yu, and maxx,y(ut) in the last seven temporal layers which contains quenching occurrence for Case 8.0.

t x y maxx,yu maxx,y(ut)

5.596499999999618 0.025 0.025 0.9656132480353845 27.20492580514906
5.598499999999617 0.025 0.025 0.9668480910506297 28.76690218778399
5.599999999999616 0.025 0.025 0.9678079528853171 30.06497816241713
5.601999999999615 0.025 0.025 0.969139216203357 32.00073689849199
5.603982012140827 0.025 0.025 0.9708363009713709 34.72704476646155
5.604262757909247 0.025 0.025 0.9835341519876587 73.15674241637485
5.604272047535358 — — — 6.637517818582074×1011
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Figure 8: )e graphs of (a) maxx,yu as t increases and (b) maxx,y(ut) as t increases from the initial moment to the occurrence of quenching
behavior for the convection term b/(αx + βy).
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whereas maxx,y(ut) at other positions are positive numbers
less than 1, which can be seen via Figures 9(b) and 10(b).
Obviously, the larger maxx,y(ut) are all less than
73.15674241637485, which is reasonable for a quenching
case.

4.5.=e Effect of Burner Size on Quenching. )e relationship
between combustion the chamber shape and quenching
features is discussed in this paragraph, which shows how the
ratio of length to width of the burner affects the quenching
behavior. In terms of c(x, y) � b/(1 + αx + βy), we also
consider serial values of α/β taken in [0.7, 0.97] besides α � β

corresponding to Case 7.0 in Table 5 because it does not
produce quenching behavior when α/β is smaller than 0.7.
We choose ten values: 0.7, 0.72, 0.82, 0.85, 0.88, 0.89, 0.9,
0.92, 0.95, and 0.97 for Case 7.0.1–Case 7.0.10 in Table 5.
Specially, Case 7.0.1: α/β � 0.7, Case 7.0.2: α/β � 0.72, Case
7.0.3: α/β � 0.82, Case 7.0.4: α/β � 0.85, Case 7.0.5:
α/β � 0.88, Case 7.0.6: α/β � 0.89, Case 7.0.7: α/β � 0.9, Case
7.0.8: α/β � 0.92, Case 7.0.9: α/β � 0.95, and Case 7.0.10:
α/β � 0.97. )e quenching data associated with different α/β
based on q � 0.5, α �

���
200

√
, bx � by � 10, θ � 1, τ0 � 0.0003,

and h0 � 1/55 for the convection term b/(1 + αx + βy) are
recorded in Table 5. From Table 5, we can discover that
quenching time tmax that is 4.517239999869761 is the largest
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Figure 10: )e graphs of (a) u as y increases and (b) ut as y increases when t is T∗8 for the convection term b/(αx + βy).
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Figure 9: )e graphs of (a) u as x increases and (b) ut as x increases when t is T∗8 for the convection term b/(αx + βy).

14 Mathematical Problems in Engineering



www.manaraa.com

τ n

5.585 5.59 5.595 5.6 5.6055.58
t

0

0.0001

0.0002

0.0003

0.0004

0.0005

(a)

h k

0.2 0.4 0.6 0.8 10
x

0

0.011

0.022

0.033

0.044

0.055

(b)

h j

0.2 0.4 0.6 0.8 10
y

0

0.011

0.022

0.033

0.044

0.055

(c)

Figure 11: (a) )e curve of the temporal steps τn as time t increases, (b) the variation of spatial steps hk as x processes, and (c) the variation
of spatial steps hk as y processes and for the convection term b/(αx + βy).
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Figure 12: (a) )e 3D plot of u and (b) the 3D plot of ut when t � T∗8 for the convection term b/(αx + βy).
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when α/β � 0.85 and quenching location xmax � ymax that is
0.03636363636363636 when 0.89≤ α/β≤ 1.

Similarly, we investigate quenching behavior variation
with the changes of α/β for convection function b/(αx + βy).
From a number of tests, we select eleven meaningful cases to
be given in Table 6. Case 8.0: α/β � 1, Case 8.0.1: α/β � 0.15,
Case 8.0.2: α/β � 0.25, Case 8.0.3: α/β � 0.3, Case 8.0.4:
α/β � 0.4, Case 8.0.5: α/β � 0.5, Case 8.0.6: α/β � 0.6, Case
8.0.7: α/β � 0.7, Case 8.0.8: α/β � 0.8, Case 8.0.9: α/β � 0.85,
and Case 8.0.10: α/β � 0.95. )e initial t− step is τ0 � 0.0005,
and the initial x− step (y− step) is h0 � 1/40. q, α, bx(by), and
θ are set as cq � 1.1, α � 20, bx � by � 3, and θ � 1. It is
easily seen that quenching occurs, and quenching location
xmax � ymax is 0.025 when α/β≥ 0.15 and quenching time
tmax is the smallest when α/β � 0.375 from Table 6.

Figures 13 and 14 display the relationships between tmax,
xmax, ymax, and α/β, respectively, in which, the red curves in
Figures 13(a) and 14(a) reflect quenching time tmax varia-
tions as α/β rises; the blue curves in Figures 13(b) and 14(b)
reflect quenching location xmax variations as α/β rises; the
green curves in Figures 13(b) and 14(b) reflect quenching
location ymax variations as α/β rises. Figure 13 corresponds
to Table 5, and Figure 14 corresponds to Table 6. )e highest
value marked by the green sign of the red contour in
Figure 13(a) is the quenching time 4.517239999869761 of
Case 7.0.4. Quenching time tmax drops monotonously as α/β
increases when 0.85< α/β≤ 1.0, and it promotes

monotonously as α/β increases when 0.7≤ α/β≤ 0.85. )e
shape of the red contour in Figure 14(a) is different from that
of the red contour in Figure 13(a). Its lowest green point is
just the quenching time 5.160277808704819 of Case 8.0.10,
and α/β is 0.95. )e contour shows the fluctuation of the
points up and down. For the relationship between xmax and
α/β, we rely on the tendencies of the red dots on the blue
curves in Figures 13(b) and 14(b), respectively, to see that
xmax keeps a same value in each case. Depending on the
trend of the purple dots on the green curves in Figures 13(b)
and 14(b), respectively, we can find that ymax keeps a smaller
value than xmax when 0.7≤ α/β≤ 0.89 and becomes the same
value as xmax when 0.89≤ α/β≤ 1 for Figure 13(b) and ymax is
equal to xmax for Figure 14(b). Meanwhile, it is clearly
observed that there is only the blue contour with ten red
points extending to the end in Figure 14(b).

Finally, we can conclude that quenching problems based
on different convection functions require different com-
bustion chamber sizes. It can lead to quenching behaviors to
properly take the ratio of α and β when α/β≥ 0.7 for con-
vection function b/(1 + αx + βy). But, it can result in
quenching phenomena to properly take the ratio of α and β
when α/β≥ 0.15 for the convection term b/(αx + βy). By
comparing, it is easier to form quenching behaviors for the
latter than the former. Generally, we can consider it will
produce quenching phenomena when α/β takes a value not
less than 0.7. )ere must be a suitable ratio that will spend

Table 5: Quenching time, quenching location, max u, and max ut relative to different α/β when c(x, y) � b/(1 + αx + βy) and
q � 0.5, α �

���
200

√
, bx � by � 10, and θ � 1.

Case name tmax xmax ymax max u max ut

Case 7.0 4.487776579638927 0.03636363636363636 0.03636363636363636 0.9992409498317957 1539.153786381783
Case 7.0.1 4.279622943667804 0.03636363636363636 0.01818181818181818 0.9992681723524656 1710.18659619492
Case 7.0.2 4.331831171603769 0.03636363636363636 0.01818181818181818 0.9991903860122657 1552.306642881425
Case 7.0.3 4.496584166548055 0.03636363636363636 0.01818181818181818 0.9991987852767854 1599.733801339674
Case 7.0.4 4.517239999869761 0.03636363636363636 0.01818181818181818 0.9993256457315207 1911.903484162842
Case 7.0.5 4.51465481210012 0.03636363636363636 0.01818181818181818 0.9992234514278073 1453.952639953373
Case 7.0.6 4.513026286098267 0.03636363636363636 0.03636363636363636 0.9995938543472831 2793.85091710218
Case 7.0.7 4.511208275853616 0.03636363636363636 0.03636363636363636 0.9997633374772214 4813.578815453525
Case 7.0.8 4.50725924981429 0.03636363636363636 0.03636363636363636 0.9993672152218838 1807.556556363968
Case 7.0.9 4.500508288781494 0.03636363636363636 0.03636363636363636 0.9996751433553265 3556.703280522448
Case 7.0.10 4.495664373739898 0.03636363636363636 0.03636363636363636 0.9992396930880079 1524.670120016285

Table 6: Quenching time, quenching location, max u, and max ut relative to different α/β when c(x, y) � b/(αx + βy) and
q � 1.1, α � 20, bx � by � 3, and θ � 1.

Case name tmax xmax ymax max u max ut

Case 8.0 5.604262757909247 0.025 0.025 0.9835341519876587 73.15674241637485
Case 8.0.1 48.53275162233688 0.025 0.025 0.9800673701485662 11.64671094996052
Case 8.0.2 29.17257043706389 0.025 0.025 0.9806176145779403 20.45608182578629
Case 8.0.3 25.29371073307144 0.025 0.025 0.9813605780402614 26.01159161851154
Case 8.0.4 24.18215821258183 0.025 0.025 0.9819794464122609 34.70682386174796
Case 8.0.5 24.67754900263962 0.025 0.025 0.9810927486939868 39.65241020973182
Case 8.0.6 46.46933057744767 0.025 0.025 0.9825870000519357 51.20986827535954
Case 8.0.7 14.79035540276399 0.025 0.025 0.9804808252326324 48.88835666486023
Case 8.0.8 15.63082052925696 0.025 0.025 0.9810194325889038 54.83303601502359
Case 8.0.9 22.86481549877496 0.025 0.025 0.9806433847147185 56.65280512266988
Case 8.0.10 5.160277808704819 0.025 0.025 0.9824769898865595 66.75815635770577
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the most quenching time. When the length and the width of
the combustion chamber are close (i.e., 0.89≤ α/β≤ 1), the
horizontal coordinate of quenching location is equivalent to
its vertical coordinate.

5. Conclusions

Nonlinear singular degenerate reaction-diffusion equation
plays more and more important role in the quenching area
such as diffusion of thermal and energy, combustion theory,
aerospace engineering, and biomedical treatment. We put
forward a compact difference scheme and built an adap-
tation algorithm to solve the 2D convection-reaction-dif-
fusion equation of the quenching type. Depending on
theoretical and numerical experiments above, we can get
some conclusions as follows. As a valid and powerful

mathematical tool, the high-order compact difference
scheme combining with the proper adaptive procedure may
offer elegant manners to resolve the semilinear singular
degenerate partial differential equation. It is very efficient to
employ the two-layer self-adaptive grid principle for solving
the quenching problem. )e self-adaptive temporal step
makes time adaptation activated when matching the critical
condition. It not only saves computational cost, but also
impacts on specific moment of quenching. Similarly, it is
important to choose spatial adaptation parameters, which
may decide where the temporal derivative will blow-up, even
whether quenching occurs or not. )e study provides the
feasibility of analyzing and resolving different engineering
applications of the quenching problem in different finite
difference schemes on an adaptive mesh. We will conduct
further research in the future, which includes the 3D
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Figure 13: (a) )e plot of tmax as α/β increases and (b) the plots of xmax and ymax as α/β increases for the convection term b/(1 + αx + βy).
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Figure 14: (a) )e plot of tmax as α/β increases and (b) the plots of xmax and ymax as α/β increases for the convection term b/(αx + βy).
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reaction-diffusion equations with the convection function of
the quenching type.
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